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Critical behavior of a random diode network
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We study the percolation properties of a random diode network~RDN! which contains two kinds of directed
bonds on a square lattice. This network is a special case of the random insulation-resistor-diode network. Both
Monte Carlo simulations and series expansion for the percolation probability show that an estimated critical
exponent,b50.179460.008, is different from known values for a conventional insulation-resistor-diode net-
work. RDN belongs to neither the isotropic percolation universality class nor to the directed percolation
universality, which we attribute to a difference of symmetry breakdown around the critical point.
@S1063-651X~99!09406-4#
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I. INTRODUCTION

A random insulation-resistor-diode network~IRD! is a
kind of a generalized percolation model@1–4#. In IRD, each
bond is occupied by one of the following components
positive diode~conducting either upward or to the right!, a
negative diode~conducting in the opposite direction!, a re-
sistor ~conducting in both directions!, and an isolation~dis-
connecting! with probabilitiesp, q, r and s512p2q2r ,
respectively. By settingr 5s50 andp512q, a random di-
ode network on a square lattice is obtained as a special
of IRD. The isotropic bond percolation~IP! @5,6# and the
directed bond percolation~DP! @7–9# are also obtained a
special cases of IRD by settingp5q50 and p5r 50, re-
spectively. By using the position-space renormalizat
group@3,4# and ‘‘planar lattice duality’’ relation @10,11#, the
phase diagram for IRD and geometrical properties such
correlation length exponents were studied by Redneret al. It
is known that the critical point for IP is exactly12 and that the
percolation probability critical exponent must beb IP55/36.
On the other hand, no exact values are known for DP. H
ever, a long series expansion for the percolation probab
obtained by Jensen and Guttmann gives the critical expo
bDP50.276 43(10)@12–15#.

The critical point for RDN corresponds to an intersecti
of the four boundaries in Fig. 1. One of the natural questi
is whether the critical exponent for RDN is unique or it is t
same asb IP or bDP. In this paper, we report that the perc
lation probability for RDN is characterized by ab value
which is different from bothb IP andbDP.

Consider a finite square region on a square lattice, defi
as

Vn
05$~x,y!PZ2;2n<x<n,2n<y<n%. ~1!

We assume that each bond is occupied by a positive diod
a negative diode with probabilities 12q andq, respectively.
If there is at least one current path between two sites, we
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that the sites are connected. LetPn(q) be the probability that
the origin (0,0) is connected to at least one site on the bo
of Vn

0 ,Bn , defined by

Bn5$~x,y!PZ2,uxu5n%ø$~x,y!PZ2,uyu5n%. ~2!

Then, the percolation probabilityP`(q) is defined as a limit,
P`(q)5 limn→`Pn(q).

II. MONTE CARLO SIMULATIONS

In the case ofq51/2, one finds that the percolation prob
ability for RDN is equal to that for the isotropic bond perc
lation, thus the percolation probability is exactly zero. Fu
thermore, if qÞ 1

2 , the percolation probability is strictly
greater than zero. It implies that the critical point for RDN
q51/2. Although this value is the same with the critic
point of the isotropic percolation, the critical behavior
quite different. The most significant difference is that f
RDN the infinite cluster is directed ifpÞq. Consider the
connection probability between the origin and a s
(j,j), P(j,q). If q, 1

2 , then asj approaches minus infinity
P(j,q) converges to zero. SinceP`(q)5P`(12q), ‘‘ po-
larization’’ of the infinite cluster reverses atq5 1

2 . To ob-

ri-
FIG. 1. Projections of the phase diagram of IRD to~a! s50, ~b!

r 50, and~c! q50. RM denotes the critical point. Forq,1/2, there
is a macroscopic current in the direction of (1,1).
6513 ©1999 The American Physical Society
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serve the reversion and to help our intuition, contour plots
the pair correlation function between the origin and a s
located at (x,y) are shown in Fig. 2. The corresponding da
were obtained by Monte Carlo simulations on
204832048 square lattice, averaged over 53104 realiza-
tions. The ‘‘polarization’’ quickly becomes rather sharp
parameterq separates from the critical point.

We estimated the critical exponent by a Monte Ca
simulation. Clusters including the origin are generated by
following branching process, which is a kind of Markov pr
cess in (211) dimensions. Here we call a site connected
the origin a particle. A particle is set on the origin at t
initial stepn50. Particles created at the (n21)th step pro-

FIG. 2. Contour plots of pair correlation function between t
origin and a site (x,y). Regions with higher values are shown
darker gray;q50.5, 0.49, and 0.47 from top to bottom.
f
e

e

o

duce new particles to their right-hand~left-hand! vacant
neighbors with probability 12q (q) at the next stepn. In a
similar way, particles are created upward~downward! with
probability 12q (q). If there are no new particles at a finit
step, the origin belongs to a finite cluster.

Side lengths of square regionL and the number of inde
pendent runsNr were varied fromL510 420,Nr55000
close toqc , to L51280,Nr5104 away fromqc .

Figure 3 shows lnPn(q) ~for Nr55000) against ln(1/2
2q). Although it is well known that the percolation prob
ability for both IP and DP exhibits power-law behavior ne
the critical point, this is not obvious in the case of RD
However, we observe that simulation points fall nicely on
straight line. Thus, we conclude that the power law near
critical point holds for RDN as well. Assuming a powe
law, the percolation probability is expressed asP`(q)
;uqc2qub, whereqc is the critical point andb is the critical
exponent.

By comparing the straight line in the middle, which has
slopeb50.187 and the remaining straight lines with slop
b IP55/36 andb IP50.276 43(10) in Fig. 3, one can clearl
see that theb value for RDN is different from those for IP
and DP, and the difference cannot be accounted for by si
lation errors.

III. SERIES EXPANSION
OF THE PERCOLATION PROBABILITY

To estimate the critical exponent more precisely, we
rive a series expansion of the percolation probability
RDN, which is represented as a polynomialP`(q)
5(n50

` cnqn for smallq. We used a program based primari
on the algorithm of Martin@16,17# for enumerating isolated
connected clusters.

Clusters including the origin are generated in the sa
way as that introduced in the Monte Carlo simulation, ho
ever all possible clusters are generated in finite steps. I
useful to introducel x ( l y) defined as a projection length of
cluster to thex (y) axis, respectively. Since the number
nearest-neighbor sites for a cluster withl x and l y is greater

FIG. 3. lnP`(q) for RDN against ln(1/22q) ~Monte Carlo
simulation!. Slopes give the critical exponentb values. Slopes of
the upper ~lower! dashed line are b IP55/36 and bDP

50.27643(10), respectively.
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thank5 l x1 l y ; the degree inq for the cluster probability is
also greater thank.

If the numberk corresponding to a cluster is greater th
or equal to the predetermined degree of the series, the clu
stops growing and a new configuration which never appea
in the former process is generated from the cluster cre
one step before. We note that the coefficients ofP`(q) are
determined as increasing the number ofk. By calculating
probabilities for all clusters withk<13, we get the following
series expansion:

P`~q!512q22q422q622q722q8212q9

12q10254q11138q122198q131O~q14!. ~3!

This series was obtained by enumerating about eight h
dred millions isolated clusters and it takes about two we
on our personal computer~PentiumII 450 MHz!. In order to
evaluate the critical exponentb, we suppose that the perco
lation probability is governed by a simple power law a
used Pade´ approximants to the series for (d/dq)ln P`(q).
The critical pointqc and the critical exponentb are given by
the first pole on the positiveq axis and the residue of th
Padéapproximant at this pole. The results are summarize
Fig. 4. The estimated critical point values agree with
exact valueqc51/2. The series obtained is rather short, s
noticeable deviation inb remains, however since the exa
critical point is known, we can obtain a better estimati
of b* (q) by forming Pade´ approximants to the serie
(qc2q)(d/dq)ln P`(q) in q @18#. The critical exponent is
obtained by settingq5qc . We summarize the results i
Table I.

FIG. 4. Pole residues for Dlog Pade´ approximants to percolation
probability.

TABLE I. Estimations of the critical exponentb for RDN by
evaluating the Pade´ approximants to the (1/22q)(d/dq)ln P`(q).

N @N21/N# @N/N# @N11/N#

4 0.182663 0.179487 0.179713
5 0.179627 0.179481 0.179001
6 0.181671 0.181569
ter
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By combining series expansion and Monte Carlo valu
for b, we estimate the percolation probability critical exp
nent for RDN asb50.179460.008.

To consider a relation between the symmetry breakdo
in RDN and the critical exponent, we introduce a modifi
random diode network. We denote the original model a
type ~2:2! and the modified model as a type~1:3!. In the type
~1:3!, a site is connected to a lower site with probabilityq
@instead of 12q for the type~2:2!#. We performed Monte
Carlo simulation in the same way as for RDN except
changing the maximum system size fromL510 240 to 2560.
A plot of ln P`(q) against ln(1/22q) is shown in Fig. 5. The
slope obtained by the least-squares method is close tob IP
55/36. Here we note that while the infinite cluster is dire
tional, the critical exponent is notbDP but b IP .

As mentioned in the beginning of this paper, for the~2:2!
type model changing the parameterq across the critical point
switches the ‘‘polarization’’ of the cluster. This property
peculiar to the type~2:2! and the new model does not hav
the P`(q)5P`(12q) symmetry.

IV. EXTENSION OF RDN

It is interesting to study the transition from the type~2:2!
to the type~1:3!. We extend RDN by setting the connectio
probability to a lower site ase(12q)1(12e)q. The type
~2:2! and the type~1:3! are given by settinge50 ande51,
respectively. In the case of 0,e,1, the most significant
difference is that the second critical pointqc(e) exists be-
tweenq51/2 andq51. The critical exponentb is extremely
sensitive to errors for the critical point, thus we estimated
critical point by time-dependent simulations, which is an
ficient method for determining critical points@19#. At the
critical point, we assume that the percolation probability
governed by a power law for largen which is introduced in
the branching process as follows:

P~n,e!}n2d(e). ~4!

We performed 104 independent runs up to 5000 steps f
different values ofe50.5 ande50.8. Nice straight lines are
observed in plots for lnP(n,e) against ln(n) at qc(0.5)
50.5680(5) andqc(0.8)50.8220(5), respectively. The in-
set in Fig. 6 shows local slopes of lnP(n,0.8), d(n) against
1/n, which give the good estimation ofd for large n at the

FIG. 5. lnP`(q) of modified RDN against ln(1/22q) ~Monte
Carlo simulation!. The solid line is drawn with slopeb IP55/36.
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critical point. Critical exponents which are obtained areb
50.27(1) (e50.5), d50.157(5) (e50.5), and d
50.161(5) (e50.8), which agree with the DP expone
bDP50.276 43 andd50.159(1) ~we cannot accurately est
mateb in the case ofe50.8 due to the slow convergenc
against the system size near the critical point!. We also mea-
sured the critical exponent for the percolation probability

FIG. 6. Results given by Monte Carlo simulations for the e
tended RDN withe50.5 and 0.8. The slope of fitted lines in plo
of ln P(q) for e50.5 against ln(uqc2qu) gives the critical exponen
b. The slope of the upper line showsb near the critical pointqc

51/2 and the lower line showsb near the critical pointqc

50.5680. Each of them is close tob IP55/36 andbDP50.276 43,
respectively. The inset showsd(n) for e50.8 against 1/n given by
the local slope method with, from top to bottom,q50.8225,
0.8220, and 0.8215.
h

on
r

e50.5 near theqc51/2. As shown in Fig. 6, the estimate
value b50.14(1) is close tob IP50.1388 . . . . Weconjec-
ture that if 0,e,1, the critical exponentb(e) is indepen-
dent of the valuee, however the proof of it is an open que
tion.

V. SUMMARY AND DISCUSSION

We found new critical behavior for the percolation pro
ability in a special case of random diode networks. Here,
discuss a relation between RDN and another special cas
IRD, which is defined by settingq50, s5r , and p51
22r . Changing the parameterr from r 50 to r 51/2 corre-
sponds to a movement in the phase diagram in Fig. 1~c! from
the pointA to the pointB. Consider the connection probabi
ity between a site and its immediate neighbor to the rig
The sites are connected when the bond between them is
cupied by a resistor or a positive diode. Therefore, the c
nection probability is given by 12r . On the other hand, a
site is connected to its immediate neighbor to the left only
the bond between them is occupied by a resistor, and so
connection probability is given byr. Consequently, the per
colation probability P`(r ) is the same withP`(q). The
phase transition is characterized byb IP . Therefore, percola-
tion probability near the multicritical pointA is characterized
by two different critical exponents. Thus, we are deali
with two models having the same critical point and differe
critical exponents for percolation probability. Contrastin
them might provide a better understanding of RDN.
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